03- Non-Markovian continuous-time quantum random walks of multiple interacting particles

In a broad sense, any quantum-noise process arising from the coupling of a dynamical system to the environment is referred to as decoherence, and its understanding has provided a precise explanation of the occurrence of classical behavior in nature. Thus far, the most serious efforts have been directed to investigate decoherence effects on single-particle transport; as a result, the associated models do not show any divergence from classical wave mechanics. Notably, even though there exist some investigations examining the influence of decoherence and disorder on the dynamics of two-particle systems, the joint effects of decoherence, particle indistinguishability and inter-particle interactions are poorly understood. Hence, advances in this front will combine to pave the way to constructing more robust components for quantum sensors, quantum information processors, and possibly a quantum computer.

The aim of this proposal is to investigate the behavior of multiple interacting particles traversing dynamically disordered quantum systems. At first place, we will investigate decoherence effects in stochastic non-Markovian quantum walks of identical interacting particles. To keep the theoretical-experimental interface in a first plane, the theoretical work will be conducted within the context of integrated quantum photonics. To do so, our physical platform will be composed of multi-photon states exiting complex systems implemented in engineered waveguide arrays.

Contributors

Prof. Alexander Szameit
Prof. Alexander Szameit
Prof. Kurt Busch
Prof. Kurt Busch
Dr. Armando Perez Leija
Dr. Armando Perez Leija
Friederike Klauck
Friederike Klauck
Max Ehrhardt
Max Ehrhardt
Nora Schmitt
Nora Schmitt

References

  • S. Stützer, Y. Plotnik, Y. Lumer, P. Titum, N. H. Lindner, M. Segev, M. C. rechtsman, and A. Szameit, Photonic topological Anderson insulators, Nature 560, 461-465 (2018)
  • A. Perez-Leija, D. Guzmán-Silva, R. de J. León-Montiel, M. Gräfe, M. Heinrich, H. Moya-Cessa, K. Busch, and A. Szameit, Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks, npj Quantum Information, 4, 45 (2018)
  •  A. Perez-Leija, R. Leon-Montiel, J. Sperling, H. Moya-Cessa, A. Szameit, and K. Busch, Two- particle four-point correlations in dynamically disordered tight-binding networks, Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 024002 (2018)
  •  R. Román-Ancheyta, I. Ramos-Prieto, A. Perez-Leija, K. Busch, and R. de J. León-Montiel, Phys. Rev. A 96, 032501 (2017)
  •  J. M. Zeuner, M. C. Rechtsman, Y. Plotnik, Y. Lumer, S. Nolte, M. S. Rudner, M. Segev, and A. Szameit, Observation of a Topological Transition in the Bulk of a Non-Hermitian System, Phys. Rev. Lett. 115(4), 040402 (2015)
  • S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. C. Rechtsman, and A. Szameit, Topologically protected bound states in photonic PT -symmetric crystals, Nature Mater. 16 (4), 433438 (2017)
  • L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Observation of photonic anomalous Floquet Topological Insulators, Nature Commun. 8, 13756 (2017)